
 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 1/24

Anqlave Cryptographic Module

FIPS 140-2 Security Policy

Anqlave

Prepared by jtsec Beyond IT Security S.L.

Version: 1.13

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 2/24

Table of content

1 Introduction .. 4

1.1 Overview ... 4

1.2 Document Organization .. 4

2 Module Specification .. 5

2.1 Modes of Operation and Security Functions .. 5

2.2 Block Diagram ... 6

2.3 Critical Security Parameters .. 8

2.4 Ports and Interfaces .. 9

3 Roles, Authentication and services .. 10

3.1 Roles and Authentication .. 10

3.2 Services ... 10

4 Physical Security ... 12

5 Operational Environment ... 13

5.1 Tested Configuration .. 13

5.2 Operation Rules .. 13

6 Cryptographic Key Management .. 14

6.1 Random Number Generation.. 14

6.2 Key Generation ... 14

6.3 Key Entry and Output .. 14

6.4 Key Storage ... 14

6.5 Key Zeroization ... 14

7 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) .. 15

8 Self-Tests .. 16

8.1 Power-Up Self-Test ... 16

8.2 Conditional Self-Test ... 16

9 Mitigation of Other Attacks .. 18

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 3/24

10 Design Assurance .. 19

10.1 Configuration Management .. 19

10.2 Configuration Items Identification Method .. 19

11 Crypto Officer and User Guidance .. 20

11.1 Secure Distribution ... 20

11.2 Integrity and Confidentiality Assurance .. 20

11.3 Installation Instructions and Initialization ... 20

11.4 Secure operation ... 23

12 Glosary and Abbreviations ... 24

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 4/24

1 INTRODUCTION

1.1 OVERVIEW

This document is the non-proprietary FIPS 140-2 Security Policy for the Anqlave Cryptographic Module

(Software Version 1.5, Hardware Version: Intel Core i7-6600U). The Anqlave Cryptographic Module will

also be referred to as “the module” through the document. This Security Policy specifies the security rules

under which the module should operate to meet FIPS 140-2 level 1 requirements.

The module is classified by FIPS 140-2 as a software-hybrid, multi-chip standalone embodiment module.

The software component of the module is library providing a C-language application programming

interface (API) for use by another application which statically links with it. The hardware component of

the module is CPU which supports AES-NI instruction set, which is invoked for AES operations performed

by the module.

The FIPS 140-2 security levels for the module are as follow:

Security Requirements Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security 1

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

Table 1: Security Requirement

1.2 DOCUMENT ORGANIZATION

This security policy is one part of the FIPS 140-2 submission package. The submission package contains:

- Security policy: This document.

- Algorithm certificates: see Section “2.1 Modes of Operation and Security Functions”.

- Functional specification and design documentation: See Sections “2.2 Block Diagram” and “2.4 Ports and

Interfaces” and the document “Anqlave FIPS 140-2 Functional Specification-1.2.pdf”

- User guide: See Section “11 Crypto Officer and User Guidance”

- Finite state model: See the document “Anqlave FIPS 140-2 Finite State Model-1.2.pdf”

- Configuration item list: See the document “Anqlave FIPS 140-2 Configuration Item List-1.12.pdf”

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 5/24

2 MODULE SPECIFICATION

The logical cryptographic boundary of the module is the discrete block of data and instructions generated

from the Anqlave object module source code; a single file named fipscanister.o. This object module

contains the FIPS enabled operations (AES, ECC, HMAC, RSA, cipher_common, digest, rand, and

cipher_key_tools) and the modified version of the OpenSSL 2.0.16 source code which has been compiled

to run in intel SGX environment and has been modified to support the algorithms provided by ADV

(Anqlave Data Vault).

The module is to be run on a general-purpose computer that consists of multiple components, so the

physical cryptographic boundary is the general-purpose computer where the module is installed. This

includes the central processing unit(s), the cache, the main memory, disk drives, network interface cards

and peripherals.

2.1 MODES OF OPERATION AND SECURITY FUNCTIONS

The module can only be operated in a FIPS 140-2 Approved mode. The module supports the following

Approved security functions:

Algorithm Modes Certificate

[FIPS 186-4] RSA2 GenKey(ANSI X9.31, 2048/3072 bits), SigGenPKCS1.5,

SigVerPKCS1.5 (2048/3072 and SHA-224 SHA-256, SHA-384,

SHA-512 sizes to signature verification).

The module also supports GenKey,

SigGenPKCS1.5, SigVerPKCS1.5 (4096 bits) but

they have not been CAVP tested.

#C608

FIPS 186-2] RSA SigGenPKCS1.5 (4096 and SHA-224 SHA-256, SHA-384, SHA-
512 sizes to signature generation).

#C608

[FIPS 197] AES 128/192/256-bit [SP 800-38C] CCM, [SP 800-38D] GCM, CBC,

CTR, OFB, ECB, CFB

#C608

[FIPS 186-4] ECDSA - GenKey: curves (P-224, P-256, P-384, P-521)

- PKV: curves (P-224, P-256, P-384, P-521)

- SigGen:(P-224 [SHA-224, SHA-256, SHA-384, SHA-

512], P-256 [SHA-224, SHA-256, SHA-384, SHA-512],

P-384 [SHA-224, SHA-256, SHA-384, SHA-512], P-512

[SHA-224, SHA-256, SHA-384, SHA-512])

- SigVer: (P-224 [SHA-224, SHA-256, SHA-384, SHA-

512], P-256 [SHA-224, SHA-256, SHA-384, SHA-512],

P-384 [SHA-224, SHA-256, SHA-384, SHA-512], P-521

[SHA-224, SHA-256, SHA-384, SHA-512])

#C608

[FIPS 198] HMAC SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 #C608

[FIPS 180-4] Digest SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 #C608

[SP 800-90] DRBG Hash DRBG (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512) #C608

[SP 800-133] CKG Resulting Symmetric keys and seeds used for asymmetric key
generation are an unmodified output from an Approved
DRBG.

Vendor
Affirmed

Table 2: Modes of operation and security functions

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 6/24

Algorithm Caveat Use

RSA Key Wrapping Provides between 112 and 150 bits of

encryption strength

Key Establishment

NDRNG1 Used to provide seed input

into the module’s Approved

DRBG

Table 3: Non-Approved but Allowed Algorithm Implementations

There are no Non-Approved security functions supported by the module, because the module is always

operating in FIPS Approved mode.

2.2 BLOCK DIAGRAM

1 The module’s NDRNG produces an estimated 128 bits of entropy

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 7/24

The following block diagram depicts the information flows between the module and outside equipment

through the input/output interfaces defined in section 2.4 Ports and Interfaces.

Figure 1: Module block diagram

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 8/24

Figure 2: Picture of the Intel® Core™ i7-6600U Processor

2.3 CRITICAL SECURITY PARAMETERS

Critical Security Parameters (CSPs) encompass all symmetric keys and asymmetric private keys whose

disclosure or modification can compromise the security of the cryptographic module. The main

responsibility of the protection of the CSPs relies on the host hardware and software which is outside of

the boundary of this module using the methodology specified in section “6.4 Key Storage”.

The following table describes the different types of CSPs used by the module and their description:

CSP Description

RSA SGK RSA (2048/3072/4096 bits) signature generation

key

RSA DK RSA (2048/3072/4096 bits) decryption key

AES EDK AES (128/192/256 bits) encrypt/decrypt key

HMAC Key HMAC (256/384/512/1024 bits) key

EC SGK ECDSA (224/256/384/521 bits) signature

generation key

Hash_DRBG CSPs V (440/888 bits), C (440/888 bits), entropy input

and seed by default depending on the used SHA

size

Table 4: List of CSPs used by the module

The following table shows a complete list of the public keys used by the module:

Public key Description

RSA SVK RSA (2048/3072/4096 bits) signature verification

key

RSA EK RSA (2048/3072/4096 bits) encryption key

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 9/24

EC SVK ECDSA (224/256/384/521 bits) signature

verification key

Table 5: List of the public keys used by the module

2.4 PORTS AND INTERFACES

The physical ports of the module are the same as the general-purpose computer on which it is executing.

The module provides a logical interface via a C-language application program interface (API). FIPS 140-2

interfaces are mapped to the module’s logical interface as follows:

FIPS-140-2
Interface

Physical Interface Logical Interface Description

Data input Network port, Serial
port, USB port,
SCSI/SATA Controller

Input parameters to API
calls

The module has one input

interface that is mapped

with the API input

parameters to all

cryptographic functions.

Data output Network port, Serial
port, USB port,
SCSI/SATA
Controller

Output parameters from
APO calls

The module has one output

interface that is mapped to

the API output parameters.

Control input Network port, Serial
port, USB port, Power
button

API Function calls The module has one control

input interface that is

mapped with all API

function calls.

Status output Network port, Serial
port, USB port,
Graphics controller

Return values from API calls The module has one status

output interface which is

mapped with all API status

output parameters and

return codes

Power Input General purpose
computer power

Not Applicable Not Applicable

Table 6: Module interfaces

The output data path is provided by the data interfaces and is logically disconnected from processes

performing key generation or zeroization. No key information is output through the data output interface

when the module zeroizes keys.”

The control of the physical ports is outside module scope. When the module is performing self-tests, or

is in an error state, all data output via the data output interface is inhibited.

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 10/24

3 ROLES, AUTHENTICATION AND SERVICES

3.1 ROLES AND AUTHENTICATION

As it is required, the module supports the User and Crypto Officer roles. Only one role can be active at a

time as the module has been built to disable threading (by using the compilation option “no-threads” in

buid_openssl_fips_module.sh). Therefore, the module does not allow concurrent operators. In addition,

the cryptographic module does not support authentication mechanisms.

The following table describes each of the two operator roles support by the module. The roles are

implicitly assumed upon the invocation of the module services:

Role Authorized Services

User All the services, related to the module loading and

calling any of the API functions, except the module

installation

Crypto Officer Secure installation of the Module on the host

computer system and calling of any API functions

Table 7: Users role and authorized services

3.2 SERVICES

After the crypto officer has performed the module installation, each user (User role and crypto officer

role) can use the following services and Keys/CSPs depending its type of access by using the specified API

function:

Authorized
Services

Roles Description Keys and
CSPs

API function Access

Module
Initialization

CO Used to initialize

the module.

N/A FIPS_module_mode_set() N/A

Self-test User, CO Used to perform

self-tests.

N/A FIPS_selftest() N/A

Generate key User, CO Used to generate

symmetric and

asymmetric keys.

RSA SGK,

RSA DK,

AES EDK,

HMAC Key,

EC SGK,

RSA SVK,

RSA EK, EC

SVK

aes_keygen()
rsa_gen_keypair()
ec_gen_keypair()
hmac_keygen()

W

Encrypt User, CO Used to encrypt a

block of data with

RSA or AES.

RSA EK, AES

EDK

aes_encrypt()
aes _ecb_256_encrypt()
rsa_public_encrypt()

RX

Decrypt User, CO Used to decrypt a

block of data with

RSA or AES

RSA DK,

AES EDK

aes_decrypt()
aes _ecb_256_decrypt()
rsa_private_decrypt()

RX

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 11/24

Generate
MAC

User, CO Used to generate
HMAC

HMAC Key hmac_sign() RX

Generate
signature

User, CO Used to generate

RSA or EC

signatures.

RSA SGK,

EC SGK

rsa_sign()
ec_sign()

RX

Verify MAC User, CO Used to verify
HMAC

HMAC Key hmac_verify() RX

Verify
signature

User, CO Used to verify RSA

or EC signatures.

RSA SVK,

EC SVK

rsa_verify()
ec_verify()

RX

Digest User, CO Used to generate

a SHA-1 or SHA-2

message digest.

N/A get_digest()

N/A

Random
number
generation

User, CO Used to generate

a random number

Hash_DRBG

CSPs

rgen()

RWX

Zeroize User, CO Used to destroy all

CPSs.

All CSPs delete_object() W

Get status User, CO Used to get the

current status of

the module

N/A FIPS_get_module_state() N/A

Table 8: Description of authorized services

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 12/24

4 PHYSICAL SECURITY

The module is a software-hybrid module that operates on a multi-chip standalone platform which

conforms to the Level 1 requirements for physical security. The hardware portion is entirely contained

within a hard plastic production-grade enclosure which corresponds to the laptop enclosure that

surrounds the cryptographic module.

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 13/24

5 OPERATIONAL ENVIRONMENT

The cryptographic module operates on Ubuntu 18.04 LTS 64-bit running on the Intel® Core™ i7-6600U

CPU @ 2.60GHz × 4 processor, hence the module’s operational environment is modifiable. The operating

system segregates user processes into separate process spaces. Each process space is logically separated

from all other processes by the operating system software and hardware, preventing unauthorized access

from other running processes. The Module functions entirely within the process space of the calling

application in a single thread satisfying the requirement for a single user mode of operation.

5.1 TESTED CONFIGURATION

The following table shows the tested configuration that must be deployed in a Lenovo Thinkpad T460s

with the following specifications:

Element Specifications

Laptop Model Lenovo Thinkpad T460s

CPU Intel® Core™ i7-6600U CPU @ 2.60GHz × 4

Memory 24GB DDR4

Storage SATA SSD (512 GB)

Table 9: Tested configuration to be deployed

5.2 OPERATION RULES

Once the application is loaded into memory, the module is initialized to operate in FIPS mode that is its

only mode of operation complying with the following rules:

1. The module is initialized in the FIPS mode of operation using the FIPS_module_mode_set()

function call.

2. The replacement or modification of the module by unauthorized users is prohibited.

3. The operating system enforces authentication method(s) to prevent unauthorized access to the

Module services.

4. Before performing any cryptographic operation, the system status must be set to READY which

means that the power-up self-test has been successfully completed.

5. The output interface is inhibited if the module state is FIPS_STATE_POWER_ON,

FIPS_STATE_SELFTEST or FIPS_STATE_ERROR.

6. All Critical Security Parameters (CSP) are verified as correct and are securely generated, stored

and destroyed.

7. All host system components that can contains sensitive cryptographic data (main memory,

system bus and disk storage) must be located in a secure environment.

8. The unauthorized reading, writing, or modification of the address space of the Module is

prohibited.

9. The operating system is the responsible for multitasking operations so that other processes

cannot access the address space of the process containing the Module.

10. The user shall not link multi-threaded applications to the Module API.

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 14/24

6 CRYPTOGRAPHIC KEY MANAGEMENT

6.1 RANDOM NUMBER GENERATION

The module uses an SP 800-90A compliant Hash_DRBG for the generation of random numbers. The

module also uses a NDRNG as the source of entropy for DRBG seeds.

To perform the random number generation, the module calls the RAND_bytes() function for symmetric

and asymmetric key generation.

6.2 KEY GENERATION

The module uses the DRBG defined in Section “6.1 Random Number Generation” for the creation of

random data, which is used to generate symmetric keys and seeds for RSA or ECDSA key pair generation.

The module does not return intermediate key generation values.

6.3 KEY ENTRY AND OUTPUT

The module does not support manual key entry or intermediate key generation output. The module

supports the entry of keys to it via API input parameters in plaintext form. The module also supports the

output of keys via API output parameters in plaintext form. The module does not enter or output keys in

plaintext format outside of its physical boundary

6.4 KEY STORAGE

Public and private keys are provided to the module by the calling process, and are destroyed when

released by the appropriate API function calls. The module does not perform persistent storage of keys.

6.5 KEY ZEROIZATION

After using CSPs, symmetric keys and asymmetric keys, the memory where they are temporally stored is

automatically zeroized by calling the SAFE_FREE() function which replaces its content with 0s.

The calling application is responsible for calling the delete_object() zeroization function, which uses the

compare_header() to verify that the ID and type of the key matches properly before zeroizing it. The

zeroization function overwrite the memory occupied by keys with 0s and deallocates the memory with

the regular memory deallocation operating system call.

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 15/24

7 ELECTROMAGNETIC INTERFERENCE/ELECTROMAGNETIC COMPATIBILITY

(EMI/EMC)

The software runs in a platform that conforms to the EMI/EMC requirements specified by 47 Code of

Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A.

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 16/24

8 SELF-TESTS

8.1 POWER-UP SELF-TEST

The module starts performing the power-up self-test after being loaded into memory and initialized. Once

the module starts the performance of the power-up self-tests, it changes states from the “No Operative”

state to the “Test” state. The power-up self-tests are composed of an integrity test of the software using

HMAC-SHA1 and the KAT (Known Answer Tests), which are a group of tests based on calculating a

cryptographic value and comparing it with a stored previously determined answer. In the case of ECDSA,

it is tested using a pair-wise consistency test.

To execute the power-up self-test, the module calls the FIPS_selftest() function which performs the

integrity test of the module and the KAT for each of the Approved algorithms detailed in the following

table:

Algorithm Description

Integrity test Software integrity test using HMAC-SHA-1. The associated function to this test is

FIPS_check_incore_fingerprint().

AES Known answer test. Separate encryption and decryption test using a 128 bits key

and ECB mode. The associated function to this test is FIPS_selftest_aes().

AES CCM Known answer test. Separate encryption and decryption test using a 192 bits key.

The associated function to this test is FIPS_selftest_aes_ccm().

AES GCM Known answer test. Separate encryption and decryption test using a 256 bits key.

The associated function to this test is FIPS_selftest_aes_gcm().

RSA Known answer test. By signing and verifying with 2048 bits key and SHA-256. The

associated function to this test is FIPS_selftest_rsa().

ECDSA Pair-wise consistency test. By signing and verifying using a P-224 curve with SHA-

512. The associated function to this test is FIPS_selftest_ecdsa().

HMAC Known answer test for HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-
384 and HMAC-SHA-512. The associated function to this test is
FIPS_selftest_hmac().

SHA-1 Known answer test. Message digest using SHA-1. The associated function to this test
is FIPS_selftest_sha1(). All other SHS implementations are test as a part of the
HMAC KAT.

DRBG Known answer test. SP 800-90A HASH_DRBG: SHA-1, SHA-224, SHA-256, SHA-384

and SHA-512. The associated function to this test is FIPS_selftest_drbg().

Table 10: Power-Up self-test description

Power-on self tests return 1 if all self tests succeed, and 0 if not. If a self-test fails, the module enters the

error state and all data output is inhibited. During self-tests, cryptographic functions cannot be

performed until the tests are complete. If a self-test fails, subsequent invocation of any cryptographic

function calls will fail. The only way to recover from a self-test failure is by power-cycling the module.

8.2 CONDITIONAL SELF-TEST

The module performs the following conditional self-tests:

Algorithm Description

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 17/24

RSA Pairwise consistency test for both Sign/Verify and Encrypt/Decrypt.

ECDSA Pairwise consistency test for Sign/Verify.

Hash_DRBG -Continuous random number generator test as specified by SP 800-90A.

- SP 800-90A DRBG Health Tests: Instantiate, Reseed, Generate, and Uninstantiate.

NDRNG Continuous Random Number Generation Test

Table 11: Conditional self-test description

In the event of a DRBG self-test failure the calling application must uninstantiate and re-instantiate the

DRBG per SP 800-90A requirements.

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 18/24

9 MITIGATION OF OTHER ATTACKS

The module is not designed to mitigate against attacks which are outside of the scope of FIPS 140-2.

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 19/24

10 DESIGN ASSURANCE

10.1 CONFIGURATION MANAGEMENT

Configuration management for the module’s source code is provided by the Git source code management

system. Git provides configuration item version control, change control, flaw remediation tracking and

the tracking of source code revisions. The source code is maintained in a private Git repository with write

access restricted to authorized developers.

10.2 CONFIGURATION ITEMS IDENTIFICATION METHOD

The internal versioning of the source code files is performed by Git automatically and the assigned version

and revision are used internally to control the code development, so that it must not be confused with

the final released version of the code that is assigned manually to each source file to allow the costumer

to identify the version. The version will be assigned with the following format “Version: X.Y (Date)”, where

X is the version number, Y is the revision number and Date is the release date of the module.

Regarding each associated module documentation, they are manually versioned by appending the version

and revision to their filename as follow: Document-X.Y.

Each associated module documentation file is manually assigned a version number which is stated as part

of the file name which uses the following naming convention:

- Naming: Name-X.Y, where Name is the unique name of the related document, and X.Y is the

version and revision of the document. Every new document is starts with version v1.0.

- Version Update: When the document is modified and this modification implies major changes,

then the X number is incremented. However, if changes and modifications imply minor changes,

then the Y number is incremented.

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 20/24

11 CRYPTO OFFICER AND USER GUIDANCE

11.1 SECURE DISTRIBUTION

The Anqlave Data Vault application, which the module is integrated in, is available for downloaded from

the vendor website over HTTPS. A hash and signature of the download are provided to allow the customer

to verify the integrity of the application before proceed with the secure installation and configuration.

11.2 INTEGRITY AND CONFIDENTIALITY ASSURANCE

Due to module being contained within the Anqlave Data Vault Application, the only way to verify its

integrity is during the first run of the application.

As it is specified in the section below, during the build process of the HSMApp, the fipscanister signature

is stored in the fipscanister_digest.hex file which will be used to verify the integrity of the module.

To perform the validation, the crypto officer needs to use the incore utility to generate the signature of

the fipscanister inside the HSMEnclave.signed.so by running the following command being in the ‘release’

directory:

./fips/incore -dso ./lib/HSMEnclave.signed.so.

Once the crypto officer has obtained the signature of the fipscanister inside the HSMEnclave.signed.so,

he can compare it with the content of the fipscanister_digest.hex file generated during the build process:

Figure 3: Integrity verification of the module

11.3 INSTALLATION INSTRUCTIONS AND INITIALIZATION

This section details the steps that must be followed by the Crypto Officer to proceed with the secure

installation and initialization of the module after checking that its version is 1.5.

As is detailed in section “2 Module Specification” the fipscanister.o is composed of FIPS enabled ciphers

and the OpenSSL source code which complies with the standard FIPS 140-2. The fipscanister.o is part of

the Anqlave Data Vault library (HSMEnclave.signed.so).

The ADV application has some dependencies that must be installed prior to proceeding with the

application installation, this is because ADV is a security service that runs on Intel’s Software Guard

Extension (SGX) technology. The needed dependencies are listed below:

1. Intel SGX SDK for Linux (https://github.com/01org/linux-sgx)

2. Intel SGX driver for Linux (https://github.com/01org/linux-sgx-driver)

3. FIPS Enabled SGXSSL for Linux (OpenSSL 1.0.2q ported by Anqlave for Intel SGX Environment)

4. Boost C++ Library (http://www.boost.org) used for logging, encoding/decoding, communication,

etc.

https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx-driver
http://www.boost.org/

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 21/24

The following command and instruction must be used to proceed with the installation of the listed

dependencies:

SGX SDK and SGX driver installation:

Step 1: Configure the system with the SGX hardware enabled option.

Step 2: Check if matching kernel headers are installed:

dpkg-query -s linux-headers-$(uname -r)

Step 3: Install matching headers:

sudo apt-get install linux-headers-$(uname -r)

Step 4: Build the Intel SGX driver by executing the following command in the driver path:

make

Step 5: Install the intel SGX driver with:

sudo mkdir -p "/lib/modules/"`uname -r`"/kernel/drivers/intel/sgx"
sudo cp isgx.ko "/lib/modules/"`uname -r`"/kernel/drivers/intel/sgx"
sudo sh -c "cat /etc/modules | grep -Fxq isgx || echo isgx >> /etc/modules"
sudo /sbin/depmod
sudo /sbin/modprobe isgx

Step 6: Install the required tools to build the Intel(R) SGX SDK:

sudo apt-get install build-essential ocaml automake autoconf libtool wget python libssl-dev
sudo apt-get install libssl-dev libcurl4-openssl-dev protobuf-compiler libprotobuf-dev debhelper

Step 7: Download the prebuilt binaries by running the download_prebuilt.sh script:

./download_prebuilt.sh

Step 8: Build the Intel SGX SDK and SGX PSW:

make

Step 9: Build the Intel SGX SDK Installer

make sdk_install_pkg

Step 10: Build the Intel SGX PSW Installer

make deb_pkg
make deb_sgx_enclave_common_dev_pkg

Step 11: Install the required tool to use Intel(R) SGX SDK:

sudo apt-get install build-essential python

Step 12: Install the Intel SGX SDK:

source ${sgx-sdk-install-path}/environment

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 22/24

cd linux/installer/bin
./sgx_linux_x64_sdk_${version}.bin

Step 13: Install the prerequisites for SGX PSW:

sudo apt-get install libssl-dev libcurl4-openssl-dev libprotobuf-dev

Step 14: Install the Intel SGX PSW:

cd linux/installer/deb
sudo dpkg -i ./libsgx-urts_${version}-${revision}_amd64.deb ./libsgx-enclave-common_${version}-
${revision}_amd64.deb

Step 15: Download source code from dynamic-application-loader-host-interface project. In the source
code folder, build and install the JHI service using the following commands

sudo apt-get install uuid-dev libxml2-dev cmake pkg-config libsystemd-dev cmake .;make;sudo make
install;sudo systemctl enable jhi

FIPS Enabled SGXSSL for Linux:

Step 16: After installing the Intel SGX SDK, Intel PSW, Intel SGX driver and PERL. Download OpenSSL
package into openssl_source/ directory. (tar.gz package, e.g. openssl-1.0.2q.tar.gz)

 Step 17: cd to Linux/ directory and run the following commands to install Intel SGXSSL libraries:
make all
sudo make install

Boost and C++ Library installation:

Step 18: Install the library:

sudo apt-get install build-essential libboost-all-dev libc++-dev libcppunit-dev

After installing the dependencies, the module can be built and installed, however it’s important to

consider that the module will be compiled and installed internally during the built and installation of the

HSMApp.

The HSMApp can be installed in three different modes: pre-release mode, debug mode or production

mode. When built in production mode, the signing material (hash of HSMEnclave) has been generated

using the Intel SGX tool (sgx_sign) to sign the enclave software and then the signature is attached to the

HSMEnclave.so to generate the HSMEnclave.signed.so (This process can only be performed by whitelisted

signers as the vendor). In addition, this signing process is only necessary to ensure the security of the

enclave software, thus it does not affect to the module operation and security.

To proceed with the build and installation using the production mode, it is necessary to perform the

following steps:

Step 19: Generate the signing material by running the following script:

./build_fips.sh clean prod

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 23/24

Step 20: At this point, the signing material (HSMEnclave_hash.hex) has been generated in./release/lib.

Now bring it to the signing machine which contains the signer's key that has been whitelisted by Intel.

Sign the signing material/s (HSMEnclave_signature.hex) and then bring it back to this build machine

(./release/lib). Then run the production release script:

./prod_release.sh <pubkey> <hsm_signature> <ra_signature>

This script will build and install the HSMApp application, HSMEnclave.signed.so library, which contains the

module, and the FIPS Validation Suite. When it is executed, the HSMEnclave.signed.so (in this case the

HSMEnclave.so) is loaded with all its libraries (ADV Ciphers, OpenSSL source code compliant with FIPS

140-2, Intel SGX libraries, SGXSSL, etc.) and the included fips_premain.c which will be used to perform the

FIPS integrity test.

During the build process, the HSMApp computes the fingerprint of fipscanister.o and writes the signature

file in the variable HMAC_SHA1_SIG defined in the fips_premain.c and also creates a file named as

fipscanister_digest.hex to store its value.

Once the signature file has been generated, the build_fips.sh script passes it to the second build process

to set it when the HSMApp loads the HSMEnclave.signed.so (in this case the HSMEnclave.so).

Finally, the HSMEnclave.signed.so (in this case the HSMEnclave.so) is loaded and initializes the module in

FIPS mode by executing the fips_set_mode() function which starts the power-up self-test by calling the

FIPS_selftest() function defined in the fips_post.c file.

11.4 SECURE OPERATION

After the Crypto Officer installs and initializes the module as described in the previous section, if all the

power-up self-test (listed in section “8.1 Power-Up Self-Test)” are performed successfully, then the

module will be in READY state and will allow the User and Crypto Officer to use the authorized services

and the API functions detailed in the section “3.2 Services” related to any cryptographic operation, key

zeroization, obtaining the module status or performing a self-test.

To interact with the module, the User and Crypto Officer can use the defined ports in the section “2.4

Ports and Interfaces” without any additional measure or especial behavior, due to the module is always

operating in FIPS mode and, in addition, it does not return any private secret or key component.

Apart from that, the module generates IVs internally using the Approved DRBG which are at least 96-bits

in length. In the event that module power is lost and restored, the calling application must ensure that

any AES­GCM keys used for encryption or decryption are re­distributed.

 Version: 1.13 Date: 06/02/2020

Anqlave Cryptographic Module FIPS 140-2 Security Policy
Anqlave

 PAGE 24/24

12 GLOSARY AND ABBREVIATIONS

ADV Anqlave Data Vault
AES Advanced Encryption Standard
API Application Programming Interface
CBC Cipher Block Chaining
CFB Cipher Feedback
CO Crypto Officer
CPU Central processing Unit
CSP Critical Security Parameter
CTR Counter
DK Decryption Key
DRBG Deterministic Random Bit Generator
ECB Electronic Codebook
ECC Elliptic Curve Cryptographic
ECDSA Elliptic Curve Digital Signature Algorithm
EDK Encrypt/Decrypt Key
EMI ELECTROMAGNETIC INTERFERENCE
EMC ELECTROMAGNETIC COMPATIBILITY
FSM Finite State Model
GCM Galois/Counter Mode
HMAC Hash-based Message Authentication Code
KAT Known Answer Test
NDRNG Non-Deterministic Random Number Generator
OFB Output Feedback
RAM Random Access Memory
SHA Secure Hash Algorithm
SGK Signature Generation Key
SGX Software Guard Extension
SVK Signature Verification Key
URI Uniform Resource Identifier

